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Abstract
We study some of the basic properties of a generalized Cauchy process indexed
by two parameters. The application of the Lamperti transformation to the
generalized Cauchy process leads to a self-similar process which preserves
the long-range dependence. The asymptotic properties of spectral density
of the process are derived. Possible application of this process to model
relaxation phenomena is considered.

PACS numbers: 02.50.Ey, 05.45.Tp, 77.22.Gm

1. Introduction

Recently, Gneiting and Schlather [1] introduced a class of stationary Gaussian processes
indexed by two parameters. They called such processes the Cauchy class since these processes
can be regarded as an extension of the generalized Cauchy process used in geostatistics [2]. For
simplicity, we call a process belonging to such a class a generalized Cauchy (GC) process. The
covariance of the generalized Cauchy process has the same analytic form as the characteristic
function of the generalized Linnik distribution [3–5], just like in the case of the stretched
exponential process which has covariance in the same functional form as the characteristic
function of the symmetric Levy stable distribution [6]. The recent increase in interest in the
generalized Linnik distribution is attributed mainly to the heavy-tailed properties of Linnik
laws [7], which have potential applications in many areas ranging from anomalous diffusion
[8] to financial time series [9]. One of the reasons that the generalized Linnik distribution is
not as widely used as the stable distribution is because of the general acceptance of the latter
as the model for heavy-tailed phenomena [10]. It is also interesting to note that just like in
the case of stable distribution where there exist many physical systems that obey laws in the
same functional form as the stretched exponential law (characteristic function of symmetric
stable distribution), there are also laws in physics which have the same analytic form as the
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characteristic function of the generalized Linnik distribution or the covariance of the GC
process. The most notable one is the Havriliak–Negami relaxation law in the non-Debye
relaxation theory [11, 12]. Thus, results obtained in any one of these three areas, namely the
generalized Linnik distribution, the Havriliak–Negami relaxation law and the GC process, are
of relevance to the other two.

The main aim of this paper is to study the properties of the GC process in more detail
in view of its potential applications in modelling long-range-dependent (LRD) phenomena
which exist in many physical, biological, teletraffic and economical systems. Currently, one
of the most widely used models for LRD is based on fractional Gaussian noise (fGn), which
can be regarded as the (generalized) derivative process of fractional Brownian motion (fBm)
[13]. Both fGn and fBm are characterized by a single parameter called the Hurst index H, with
0 < H < 1. In actual application, it is rather difficult to characterize the covariance function
of a Gaussian random process over the entire trace by a single parameter [14]. In the case of
fGn, it has the weakness of not being able to describe accurately the covariance of the actual
process for the short time lag. Furthermore, in the fGn (or fBm) model, the fractal dimension
(or self-similarity) which is local in nature and the global LRD property are both determined
by a single Hurst index. Therefore, it may be useful to have a model based on a random
process which allows separate characterization of the LRD and self-similar properties. Such
a process indexed by two parameters may offer a more flexible model.

In section 2, we study some basic properties of the GC process. The self-similar process
associated with the GC process obtained by the Lamperti transformation is considered in
section 3. In the subsequent section, we study the asymptotic properties of the spectral density
of the GC process. The possible application of the GC process to model relaxation phenomena
is discussed in section 5, which is followed by the conclusion.

2. The generalized Cauchy process indexed by two parameters

X(t) is called a GC process if it is a stationary Gaussian-centred process with the following
covariance [1]:

C(t) = 〈X(s + t)X(s)〉 = (1 + |t |α)−β, t ∈ R, (1)

where 0 < α � 2 and β > 0. Note that C(t) is positive definite for the above ranges of α and
β, and it is completely monotone for 0 < α � 1, β > 0 [4, 5]. When α = 2, β = 1, one gets
the usual Cauchy process.

Recall that a process X(t) is said to be self-similar with self-similarity index κ if

X(rt)
�= rκX(t) for r > 0, (2)

where
�= denotes equality in joint finite distribution. For some applications, (2) can be too

restrictive since quite often scaling property holds only locally for small time intervals. It is
also known that a stationary Gaussian random process such as X(t) cannot be a self-similar
process [13]. However, X(t) satisfies a weaker self-similar property known as local self-
similarity. Here we consider three equivalent definitions of local self-similarity. First, a less
common definition [15] which says that a Gaussian stationary process is locally self-similar
of order κ if its covariance C(t) satisfies for t → 0,

C(t) = 1 − β|t |κ [1 + O(|t |ν)], ν > 0. (3)

In the case of the GC process, one has κ = ν = α. Note that the class of Gaussian processes
which satisfy (3) is also known as Adler processes [16, 17], which include the stretched
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exponent process [6]. A more intuitive alternative definition is the following. A Gaussian
process X(t) is said to be locally self-similar of index κ if

X(s) − X(rt)
�= rκ [X(s) − X(t)], |t − s| → 0. (4)

The two definitions of local self-similarity given in (3) and (4) are equivalent. Since we are
dealing with finite-dimensional distribution of a centred Gaussian process, suffice it to verify
for t1 and t2 → 0,

〈(X(s + rt1) − X(s))(X(s + rt2) − X(s))〉 = β|rt1|α + β|rt2|α − β|r(t1 − t2)|α
= βrα[|t1|α + |t2|α − |t1 − t2|α]

= 〈{rα/2(X(s + t1) − X(s))}{rα/2(X(s + t2) − X(s))}〉. (5)

Instead of (3) and (4), one can also adopt the definition of locally asymptotically self-
similar property first introduced for multifractional Brownian motion BH(t)(t), which is a
generalization of fBm BH(t) with the Hurst index H replaced by H(t), with 0 < H(t) < 1
[18]. For this purpose, we replace H(t) by a positive constant in the original definition. A
Gaussian process X(t) is said to be locally asymptotically self-similar with index κ at a point
t0 if

lim
ε→0

X(t0 + εu) − X(t0)

εκ
= Tt0(u), (6)

where Tt0 is called the tangent process of X(t) at the point t0. Falconer [19] has shown that
if the tangent process for a Gaussian process exists and is non-degenerate, then it is a self-
similar Gaussian process with stationary increments. By noting that up to a multiplicative
constant fBm is the only Gaussian self-similar process with stationary increments [13], the
tangent process (6) is a fBm Bκ(u) with Hurst index κ. This can easily be verified by direct
computation, using (3) with κ = α/2,

lim
ε→0

〈(
X(t0 + εu) − X(t0)

εα/2

)(
X(t0 + εv) − X(t0)

εα/2

)〉

= lim
ε→0

1

εα
{εα(|u|α + |v|α − |u − v|α)} ∼ 〈Bα/2(u)Bα/2(v)〉. (7)

The tangent process of the GC process at the point t0 is the fBm indexed by α/2 (up to a
multiplicative constant). In geostatistical application [2], there exists another way to link an
Adler process such as the GC process with fBm. It can be shown by using the same method
as given in [6] that the GC process forms a locally stationary representation of an allowable
linear combination of fBm, namely

∑n
i=1 λiBH (ti) with

∑n
i=1 λi = 0.

In order to determine the fractal dimension of the graph of X(t), we consider the local
property of the process. The fractal dimension D of a locally self-similar process of order α

is given by [15, 16]

D = 2 − α

2
. (8)

Note that the local irregularities of the sample paths are measured by the parameter α, which
can be regarded as the fractal index of the process. Thus, the behaviour of the covariance
function at the origin to a great extent determines the roughness of the random process.

The GC process is non-Markovian since its covariance C(t1, t2) does not satisfy the
triangular relation

C(t1, t3) = C(t1, t2)C(t2, t3)/C(t2, t2), t1 < t2 < t3, (9)

which is a necessary condition for a Gaussian process to be Markovian [20]. In fact, up
to a multiplicative constant, the Ornstein–Uhlenbeck process is the only stationary Gaussian
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Markov process. Since X(t) has memory, it would be interesting to see whether X(t) is a
short- or a long-memory process. For this purpose, we use the following definition [6, 21, 22].
A stationary centred Gaussian process with covariance C(t) is said to be a long-memory
process or LRD if∫ ∞

0
C(t) dt = ∞. (10)

It can be shown that the GC process X(t) is a LRD process if 0 < αβ � 1. One has [23]

∫ ∞

0
C(t) dt =

∫ ∞

0
(1 + tα)−β dt =




1

α
B

(
1

α
, β − 1

α

)
, if β > 0, αβ > 1,

∞, if β > 0, αβ < 1,

(11)

where B(x, y) = �(x)�(y)/�(x + y) is the beta function and �(z) is the gamma function.
For the limiting case when αβ = 1, one substitutes β = 1/α into (11) which gives∫ ∞

0
C(t) dt =�(1/α)�(0)

α�(1/α)
= �(0)

α
, (12)

which diverges since �(z) ∼ 1/z as z → 0. Thus, the GC process is LRD for 0 < αβ � 1
and is short-range dependent (SRD) if αβ > 1.

The large time lag behaviour of the covariance (1) is given by the hyperbolically decaying
covariance C(t) ∼ |t |−αβ, t → ∞, which is characteristic of LRD. If the covariance is
re-expressed as (1 + |t |α)−ζ/α , then the parameters α and ζ , respectively, provide separate
characterization of fractal dimension and LRD. The separate characterization of the fractal
dimension (local property) and LRD (global property) appears to be more natural and flexible
than that based on a single parameter such as in fGn. The comparison of the GC process and
fGn in the modelling of internet traffic has been studied [25].

3. Lamperti transformation of the generalized Cauchy process

The GC process X(t) is not a self-similar process. However, it is possible to obtain a self-
similar process Y (t) from a stationary process X(t) by using the Lamperti transformation [24].
For a stationary process X(t), t ∈ R, and if H > 0, we let

Y (t) = tHX(ln t), (13)

for t > 0, Y (0) = 0, then Y (t) is an H-self-similar (H-ss) process. Conversely, if {Y (t), t � 0}
is an H-ss, and if we let

X(t) = e−H tY (et ), t ∈ R, (14)

then {X(t), t ∈ R} is a stationary process. By applying the Lamperti transformation to the
GC process X(t) results in a Gaussian H-ss non-stationary process Y (t) with zero mean and
covariance:

〈Y (t)Y (s)〉 = (ts)H [1 + |ln(t/s)|α]−β, t, s > 0. (15)

It can be shown by direct computation that the increment process of Y (t) is non-stationary. Now
we want to see whether the increment process of Y (t) satisfies a weaker stationary property. It
is possible to show that the increments of Y (t) are locally stationary if an additional condition
is imposed on the parameter α. We have for t � τ > 0,

〈(Y (t + τ) − Y (t))2〉 = 〈(Y (t + τ))2〉 + 〈(Y (t))2〉 − 2〈Y (t + τ)Y (t)〉

= (t + τ)2H + t2H − 2[t (t + τ)]H
[

1 +

[
ln

(
t + τ

t

)]α]−β

= 2β
(τ

t

)α

t2H + O(max(t2H−2τ 2, t2H−2ατ 2α, t2H−α−1τα+1)), (16)
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where we have used series expansion. If we let α = 2H , then (16) becomes

〈(Y (t + τ) − Y (t))2〉 ∼ τ 2H , τ → 0+, (17)

which implies that the increments of Y (t) are asymptotically locally stationary. Recall that
the tangent process of the GC process is fBm indexed by α/2 or H if α = 2H . Thus, the
condition for local stationarity of the Lamperti-transformed GC process is consistent with the
local property of the GC process.

Next, we consider the LRD of Y (t). Recall that for a non-stationary process with a
correlation function

R(t, t + τ) = C(t, t + τ)√
C(t + τ, t + τ)C(t, t)

, (18)

the condition for LRD is given by [5, 21]∫ ∞

0
R(t, t + τ) dτ = ∞. (19)

The correlation of Y (t) is

R(t, t + τ) =
{

1 +
[
ln
(

1 +
τ

t

)]α}−β

, t, τ > 0. (20)

By noting that for x > 0, ln(1 + x) < x, we get for α > 0, β > 0,{
1 +

[
ln
(

1 +
τ

t

)]α}−β

>
[
1 +

(τ

t

)α]−β

. (21)

Thus,∫ ∞

0
R(t, t + τ) dτ =

∫ ∞

0

{
1 +

[
ln
(

1 +
τ

t

)]α}−β

dτ >

∫ ∞

0

[
1 +

(τ

t

)α]−β

dτ

= t

∫ ∞

0
(1 + zα)

−β dz = ∞, if αβ < 1, (22)

where we have used the result from (11). This implies that Y(t) is a LRD process if
αβ < 1 and it is a SRD process if αβ > 1. We note that for a large time lag, (20) approaches
a form similar to the covariance of one of the LRD stationary processes obtained by Ma [26]
by randomizing the time scale of a certain SRD stationary process. We remark that Y (t)

provides an example that the application of the Lamperti transformation to a LRD process
(in this case the GC process) gives a process which is also LRD. Examples of the Lamperti
transformation encountered so far usually relate either two SRD or short-memory processes
(for example, the Lamperti transformation between the two Markov processes, namely the
Ornstein–Uhlenbeck process and Brownian motion), or a LRD process and a SRD process (in
the case of fBm and its Lamperti-transformed process). Thus, the LRD property of the GC
process is preserved under the Lamperti transformation. In addition, the conditions of LRD
for both the GC process and its Lamperti counterpart are the same, namely αβ < 1. On the
other hand, the H-ss process associated with the GC process with αβ > 1 also preserves the
SRD property.

4. Asymptotic properties of spectral density

Just like in the case of the stationary Gaussian process with stretched exponential covariance
[6], the analytic simplicity of the covariance function of X is not inherited by the corresponding
spectral density. Although a closed-form expression for the spectral density of the GC process
does not seem to exist, expressions for its asymptotic behaviour can be obtained. These
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asymptotic expressions are very useful in physical and engineering applications. Kotz et al
[27] have obtained detailed results for the Linnik probability distribution for the case with
0 < α < 2, β = 1. Erdogan and Ostrovskii [28] have considered the general Linnik
distribution with 0 < α < 2, β > 1, including the asymmetric case. These authors used
the method of contour integral and series representations of the Linnik distribution to obtain
results of its analytic and asymptotic properties. For application purposes, we give a heuristic
method which stresses more on practical accessibility rather than mathematical rigour. The
main idea is to obtain the asymptotic expansion of the spectral density of the GC process by
formally applying term-by-term Fourier transform to the binomial expansion of its covariance
function. Such a method allows us to derive many of the important results on the asymptotic
expansion of the spectral density of the GC process which were obtained in [28] in terms of
the generalized Linnik probability distributions. We would like to stress that the treatment
given here is meant for practitioners and it is by no means rigorous. For more complete and
rigorous results, one needs to refer to [28].

First, we consider the integral operator with the kernel |t −u|−ν called the Riesz potential
operator [28], which is given by

Iαφ(t) = 1

�(α)

∫ ∞

−∞

φ(u) du

|t − u|1−α
, α 	= 1 + 2l, l = 0, 1, 2, . . . , (23)

with

�(α) = 2α
√

π�(α/2)

�[(1 − α)/2]
. (24)

Here we make use of the results that the Riesz kernel of order α in R is given by the Fourier
transform of |t |−α [29, 30]:

F [|t |−α] = {[�(α)]−1|ω|α−1, α 	= 1 + 2l, α 	= −2l, (25a)

{[�1(α)]−1|ω|α−1[�l(α) − ln|ω|], α = 1 + 2l, (25b)

where F [·] denotes the Fourier transform, l = 0, 1, 2, . . . , and

�1(α) = (−1)(1−α)/2√π2α−1�(α/2)�[(α + 1)/2], (26)

�l(α) = ln 2 +
1

2


−γ + �′(α/2)/�(α/2) +

l∑
j=1

1

j


 , (27)

and γ is Euler’s constant [23] with value γ = −�′(1) ≈ 0.577 216. We remark that the
Fourier transform of |t |−α is to be treated in the sense of generalized functions over Schwartz
space of test functions ([31], appendix B).

Recall that the function g(x) = (1 + x)ν, ν ∈ R and |x| < 1, can be expanded as a
binomial series [32]

(1 + x)ν =
∞∑

k=0

(
ν

k

)
xk =

∞∑
k=0

�(ν + k)

�(ν)�(1 + k)
xk. (28)

If we replace x by |τ |α with α > 0 in (28), then for |τ | < 1 the binomial expansion of the
covariance function (1 + |τ |α)−β is given by

C(t) = (1 + |t |α)−β =
∞∑

k=0

(−β

k

)
|t |αk

=
∞∑

k=0

(−1)k
�(β + k)

�(β)�(1 + k)
|t |αk. (29)
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If we formally carry out the term-by-term Fourier transform for the series (29) with the help
of (25), we get

S(ω) =
∫ ∞

−∞
e−iωtC(t) dt = 2π

∞∑
k=0

(−1)k
�(β + k)

�(β)�(1 + k)

2αk�[(1 + αk)/2]√
π�(−αk/2)

|ω|−αk−1. (30)

Using the following identities for gamma functions ([23], appendix A):

�(2z) = 22z−1(π)−1/2�(z)�(z + 1/2) (31)

and

−z�(z)�(−z) = π

sin(zπ)
, (32)

(30) can be expressed as

S(ω) = 2π

∞∑
k=1

(−1)k−1�(β + k)�(1 + αk) sin(αkπ/2)

π�(β)�(1 + k)
|ω|−αk−1, ω � 1, (33)

which holds for 0 < α � 2. This result is in complete agreement with that obtained by
Erdogan and Ostrovskii [28]. The spectral density of the GC process has the following
asymptotic value:

S(ω) ∼ β �(1 + α) sin(απ/2)

π
|ω|−(α+1) as ω → ∞. (34)

It can be shown [15] that if a process with spectral density satisfies the above asymptotic
behaviour, then its covariance satisfies (3) with local self-similar property. However, the
converse is not true. One notes that (34) is obtained by considering the leading term of the
infinite series (33), which needs to be truncated for numerical studies.

For the spectral density near the origin, its behaviour is more complicated. Kotz et al [27]
first noted that the behaviour of the spectral density (for α ∈ (0, 2] and β = 1) as ω → 0+

depends on the arithmetic nature of α. Erdogan and Ostrovskii [28] later showed that this
property remains valid in the general case and the arithmetic character of α and β needs to
be taken into account when considering S(ω) near the origin. Our method only allows us
to obtain results for the following two cases, namely αβ 	= 1 and αβ = 1, which are quite
sufficient for most practical purposes. A detailed discussion on the dependence of the spectral
density on the arithmetic nature of α and β is given in [28].

In order to obtain the long-time (or low-frequency) asymptotic expression, we consider
the binomial expansion of the covariance for t > 1,

C(t) = (1 + |t |α)−β = |t |−αβ(1 + |t |−α)−β

= |t |−αβ

∞∑
k=0

(−1)k
�(β + k)

�(β)�(1 + k)
|t |−αk

=
∞∑

k=0

(−1)k
�(β + k)

�(β)�(1 + k)
|t |−α(β+k). (35)

For 0 < αβ < 1, the Fourier transform of (35) is

S(ω) = 2π

∞∑
k=0

(−1)k
2−α(β+k)�(β + k)�

( 1−α(β+k)

2

)
�(β)�(1 + k)�[α(β + k)/2]

|ω|α(β+k)−1. (36)

Again, using the identities (31) and (32), we can obtain the following expression for the
spectral density:

S(ω) =
∞∑

k=0

(−1)k
�(β + k) sin(α(β + k)π/2)

�(β)�(1 + k) sin(α(β + k)π)�[α(β + k)]
|ω|α(β+k)−1. (37)
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Therefore, in the limit ω → 0+, we have the following asymptotic value:

S(ω) ∼ 1

cos(αβπ/2)�(αβ)
|ω|αβ−1. (38)

For 0 < αβ < 1, S(ω)is divergent at the origin, which is the basic feature of the LRD process.
In the case of αβ > 1, the spectral density can be expanded as

S(ω) =
∫ ∞

−∞
e−iωt (1 + |t |α)−β dt =2

∫ ∞

0
dt (1 + tα)−β cos(ωt)

= 2
∞∑

k=0

ω2k

(2k)!

∫ ∞

0
dt (1 + tα)−βt2k

= 2

α�(β)

∞∑
k=0

(−1)k
�[(1 + 2k)/α] �[β − (1 + 2k)/α]ω2k

(2k)!

= 2π

α�(β)

∞∑
k=0

(−1)k
�[(2k + 1)/α] ω2k

�(2k + 1) sin[(β − (2k + 1)/α)π ]�[1 − β + (2k + 1)/α]
, (39)

where the following integral identity (#3.251 No 11, p 343 in [23]):∫ ∞

0
xµ−1(1 + xρ)−ν dx = 1

ρ
B

(
µ

ρ
, ν − µ

ρ

)
, ρ > 0, Re(µ) < 0 < ρ Re(ν), (40)

and (32) have been used to obtain the above result. Thus, one gets for αβ > 1,

S(ω) ∼ 2π

α�(β)

�(1/α)

sin((β − 1/α)π) �(1 − β + 1/α)
as ω → 0+, (41)

which is finite. This is consistent with the short-range-dependent property of the GC process
for αβ > 1. We remark that (36) and (39) are obtained by Erdogan and Ostrovskii [28] as
residues of contour integrals. However, our heuristic method does not allow us to derive this
general result in a rigorous and unifying way. In order to obtain (39), our main guidance is that
for αβ > 1 the integral

∫∞
0 t2k(1 + tα)−β dt is finite (which is not the case for αβ > 1). Thus,

the expansion in cosine term allows us to get the required result for the asymptotic expression
for low frequency. We remark that similar expansions are also employed in deriving series for
the stable distribution from its characteristic function [33–36].

Note that in the case α(β + k) = 1 + 2l, l = 1, 2, . . . , the spectral density can be obtained
by using (25b):

S(ω) =
∞∑

k=0

(−1)k
�(β + k)

�(β)�(1 + k)

|ω|α(β+k)−1

�1(α(β + k))
[�l(α(β + k)) − ln|ω|], (42)

where �1 and �l are given by (26) and (27), respectively. If αβ = 1, one obtains by using
the identity �′(1/2)/�(1/2) = −(γ + 2 ln 2) the following leading k = 0 terms:

S(ω) ∼ 1

π
ln

1

|ω| − γ

π
as ω → 0+, (43)

which is divergent at the origin.
Finally, we consider an example of spectral density S(ω) which has a closed analytic

form. In the case when α = 2 and β > 0,

C(t) = (1 + |t |2)−β, (44)

then the spectral density of X(t) is given by

S(ω) = 21/2−β

√
π�(β)

|ω|β−1/2Kβ−1/2(|ω|), (45)
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where Kν(z) is the modified Bessel function of second kind (or the MacDonald function)
[23, 37]. Here we remark that (45) coincides with the symmetric Bessel distribution, which
has (44) as its characteristic function [38]. Since

Kν(z) ∼ 2ν−1�(ν)z−ν for z → 0+, ν > 0, (46)

one gets

S(ω) ∼ �
(

1
2 − β

)
22β

√
π�(β)

|ω|2β−1 as |ω| → 0+. (47)

Note that S(ω) → ∞ if 2β < 1, which is the condition of LRD. For the borderline case
of LRD with 2β = 1, by using K0(z) ∼ ln(1/z) as z → 0+ one gets the same asymptotic
behaviour as (43). The GC process becomes short-range dependent when 2β > 1, with

S(ω) ∼ �
(

1
2 − β

)
2
√

π�(β)
as |ω| → 0+. (48)

On the other hand, for z → ∞,

Kν(z) =
√

π

2
z−1/2 e−z

(
1 − 4ν2

8z
+ · · ·

)
, (49)

which gives

S(ω) ∼ e−|ω||ω|β−1 as |ω| → ∞. (50)

5. Application to the dielectric relaxation process

In this section, we consider the possible application of the GC process to relaxation phenomena.
We show that the covariance function of the GC process can be regarded as a relaxation
function in the time domain. To be specific, we consider linear dielectric relaxation, though
our discussion applies to other relaxation processes as well.

Experimental evidences indicate that there exists a universal pattern for relaxation
behaviour independent of the nature of materials [11]. Such a universal character is reflected
in the fractional power laws for a dielectric response function for large and small times:

f (t) = −dφ

dt
=
{
(t/τ )−n, for t � τ,

(t/τ )−m−1, for t � τ,
(51)

where we have followed the notations used in the literature of relaxation theory with φ(t)as
the relaxation function, τ > 0 denotes the characteristic relaxation time and 0 < m, n < 1
[11]. In the frequency domain, the complex dielectric susceptibility is given by the one-sided
Fourier transform:

χ(ω) = χ ′(ω) − iχ ′′(ω) =
∫ ∞

0
e−iωt d(−φ(t)), (52)

which exhibits fractional power behaviour with

χ ′(ω) ∝ χ ′′(ω) ∝ (τω)n−1, τω � 1,

�χ ′(ω) = χ ′(0) − χ ′(ω) ∝ χ ′′(ω) ∝ (τω)m, τω � 1.
(53)

One of the most widely used empirical law which reproduces the above asymptotic power law
behaviour is the Havriliak and Negami function [11, 12] given by

χHN(ω) = [1 + (iτHNω)a]−b, 0 < a, b < 1, τHN > 0, ω > 0, (54)

which satisfies (53) if a = m and b = (1 − n)/m. For b = 1, (54) is known as the Cole–Cole
(CC) function, and when a = 1 it is the Cole–Davidson (CD) function.
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Here we propose a new model for the relaxation function by using the GC process.
Physical conditions imposed on the relaxation function require φ(t) to satisfy the causal
condition φ(0) = 0 for t < 0, φ(t) > 0 for t > 0 and φ(t) → 0 as t → ∞. It is also
convenient to assume that the relaxation function is normalized to φ(0) = 1. The dielectric
relaxation function can then be modelled by the one-sided GC process X(t), t � 0 with
covariance given by

C+(t) = θ(t)[1 + (t/τGC)α]−β ≡ θ(t)φGC(t), (55)

where the Heaviside step function θ(t) = 1 for t � 0 and is zero otherwise, and τGC > 0
is the characteristic relaxation time. The response function based on (55) has the following
asymptotic power law behaviour:

−dφGC

dt
∝
{
tα−1, t � τGC,

t−αβ−1, t � τGC,
(56)

which is in agreement with (51) if we let n = 1 − α and m = αβ. The complex susceptibility
is then given by the one-sided Fourier transform [11, 12]:

χ(ω) = −
∫ ∞

−∞
e−iωtθ(t) dφGC(t) = β

τGC

∫ ∞

0

(
t

τGC

)α−1 [
1 −

(
t

τGC

)α]−β

e−iωt dt. (57)

By using the same method as given in the previous section, we expand the integrand as a
binomial series for t < τGC and t > τGC, and perform term-by-term the one-sided Fourier
transform by using the Fourier transform of tλ+ = θ(t)tλ given by∫ ∞

−∞
e−iωt tλ+ dt = i�(λ + 1)

[
eiλπ/2ω−λ−1

+ − e−iλπ/2ω−λ−1
−

]
, (58)

for non-integral λ [31]. For ω > 0, we obtain the following asymptotic expansions of the
susceptibility for high and low frequencies, respectively, for non-integers αk and α(β + k):

χGC(ω) =
∞∑

k=1

(−1)k−1�(β + k)�(1 + αk)

�(β)�(k)
e−iαkπ/2(τGCω)−αk

∼ β�(1 + α)[cos(απ/2) − i sin(απ/2)](τGCω)−α, τGCω � 1, (59)

and

χGC(ω) =
∞∑

k=0

(−1)k�(β + k + 1)�(1 − α(β + k))

�(β)�(1 + k)
eiα(β+k)π/2(τGCω)α(β+k)

∼ β�(1 − αβ){cos(αβπ/2) + i sin(αβπ/2)](τGCω)αβ, τGCω � 1. (60)

In the case with α = 1, and for t < τGC, instead of (58) one uses∫ ∞

−∞
e−iωt tk+ dt = (−i)kπδ(k)(ω) + k!PV (iω)−(k+1), k = 1, 2, . . . , (61)

where PV(·) denotes principal value. Alternatively, one can employ the integral identity∫ ∞

0
ezx(1 + x)−ν dx = z−1+ν/2 ez/2W−ν/2,(1−ν)/2(z), (62)

where Wλ,µ(z) is Whittaker’s function [23]. Using the asymptotic expansions of Wλ,µ(z) for
z → +∞ and z → 0+, one obtains

χGC(ω) ∼ β(iτGCω)−1, τGCω � 1, (63)

χGC(ω) ∼ β�(−β)(iτGCω)β, τGCω � 1, (64)

which agree, respectively, with (59) and (60) with α = 1.
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The above discussion shows that the real and imaginary parts of the complex susceptibility
χGC(ω) scale asymptotically like

χ ′
GC(ω) ∝ χ ′′

GC(ω) ∝ ω−α, τGCω � 1,
(65)

�χ ′
GC(ω) = χ ′

GC(0) − χ ′
GC(ω) ∝ χ ′′

GC(ω) ∝ ωαβ, τGCω � 1,

with their ratio given by

χ ′′
GC(ω)/χ ′

GC(ω) = tan(απ/2), τGCω � 1, (66)

χ ′′
GC(ω)/�χ ′

GC(ω) = tan(αβπ/2), τGCω � 1. (67)

This asymptotic behaviour is similar but not the same as that of the HN function (54). By
letting m = a and (1 − n)/m = b in (53) and comparing it with (59) and (60) give the
conditions for the asymptotic power laws of the HN model to be the same as that of the GC
model as α = ab and β = 1/b, which lead to contradiction with the assumptions that a, b, α

and β only take values in (0, 1]. In the case of the CC function with b = 1, then both φCC(t)

and φGC(t) have the same asymptotic laws if we take β = 1.
The comparison between the GC model and the HN model can also be carried out in the

time domain. Bertelsen [39] was the first to derive the response function that corresponds to the
HN function, which allows one to obtain the long-time asymptotic power law. Recently, Hilfer
[40] has obtained the relaxation function associated with the HN function in terms of the Fox
function. For our comparison purpose, we can derive the relaxation function φHN(t) by taking
the one-sided inverse Fourier transform of (54). We remark that due care needs to be taken
for the CD case in order to obtain the correct asymptotic expression. In the high-frequency
region, the term-by-term one-sided inverse Fourier transform of the series expansion of (53)
gives for non-integer a(b + k),∫ ∞

0
χHN(ω) eiωt dω = − dφHN

dt
=

∞∑
k=0

(−1)k
�(b + k)(t/τHN)a(b+k)−1

τHN�(1 + k)�(b)�[a(b + k)]
(68)

or

φHN(t) = 1 +
∞∑

k=0

(−1)k+1 �(b + k)(t/τHN)a(b+k)

�(1 + k)�(b)�[1 + a(b + k)]
, (69)

where we have used φHN(0) = 1 and z�(z) = �(1 + z). From (68), one gets for t � τHN,
dφHN

dt
∼ tab−1. In the case of the CC function with b = 1, we get from (68)

dφCC

dt
=

∞∑
k=0

(−1)k+1 (t/τCC)a(1+k)−1

τCC�[a(1 + k)]
= −1

τCC

(
ta−1

τCC

)
Ea,a(−(t/τCC)a), (70)

where Ea,b(z) = ∑∞
k=0

zk

�(ak+b)
is the generalized Mittag–Leffler function [41], when

b = 1, Ea,1(z) ≡ Ea(z) is the Mittag–Leffler function. Thus, subject to the condition
φCC(0) = 1,

φCC(t) = 1 +
∞∑

k=1

(−1)k
(t/τCC)ak

�(1 + ak)
= Ea(−(t/τCC)a). (71)

By using the small-time asymptotic value of the Mittag–Leffler function Ea(z) ∼ 1 − z
�(1+a)

(or the leading term of the series of (71)), one gets dφCC(t)

dt
∼ ta−1 for t � τCC. When a = 1,

the CD function χCD(ω) = [1 + iτCDω]−b is the one-sided Fourier transform of

−dφCD(t)

dt
= (t/τCD)b−1 e−t/τCD

τCD�(b)
, (72)
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which gives for t � τCD,
dφCD

dt
∼ t−(1−b). (72) can also be obtained from (69) by letting a = 1.

Imposing condition φCD(0) = 1, the CD relaxation function for short time is given by

φCD(t) = 1 − 1

�(b)

∫ t

0
(s/τCD)b−1 e−(s/τCD) d(s/τCD) = 1 − γ (b, t/τCD)

�(b)
, (73)

where γ (b, z) is the incomplete gamma function [23]. Note that (72) coincides with the
gamma distribution, with the CD function corresponding to its characteristic function [38].
The series expansion of (73) is given by (68) with a = 1.

Similarly, one can derive the long-time asymptote of the HN response function by taking
the one-sided inverse Fourier transform of the series expansion of (54) in the low-frequency
region for non-integer ak:

φHN(t) =
∞∑

k=1

(−1)k+1 �(b + k)(t/τHN)−a k

�(1 + k)�(b)�(1 − ak)
, (74)

such that φHN(t) ∼ t−a for t � τHN. For b = 1, one gets the CC relaxation function
φCC(t) ∼ ta for t � τCC, which again can be obtained by using the large-time asymptotic
property of the Mittag–Leffler function with Ea(z) ∼ z−1

�(1−a)
in (71). Note that in the case of

the CD relaxation function with a = 1, if we consider the asymptotic expansion of γ (b, t/τCD),
we obtain for t � τCD,

φCD(t) = (t/τCD)b−1 e−t/τCD

�(b)

∞∑
k=0

k∏
l=1

b − l

(t/τCD)l
. (75)

However, in order to get the correct asymptotic expression for φCD(t) (or −dφCD(t)/dt)
corresponding to χ ′

CD(0) − χ ′
CD(ω) ∝ χ ′′

CD(ω) ∝ τCDω, τω � 1, one considers instead of
(61) the following Fourier pair [31]:

F
[
t−k
+

] = (iω)k−1

(k − 1)!

[
k−1∑
n=1

n−1 + �′(1) + iπ/2 − ln(ω + i0)

]
. (76)

(76) implies that dφCD/dt ∼ t−2 and φCD ∼ t−1 for t � τCD.
Again, by comparing the results obtained for various cases of φHN(t) with the

corresponding values for φGC(t), we conclude that only in the case of the Cole–Cole function
with b = β = 1 they have the same asymptotic fractional power laws for both the large- and
short-time regions. The Cole–Davidson function φCD(t) deviates considerably from φGC(t) in
the large-time region. We have tabulated the results in table 1.

Next we want to compare φGC with another popular relaxation model based on the
Kohlrausch–Williams–Watts (KWW) function or the stretched exponential relaxation function
(in time domain) [11, 12] given by

φKWW(t) = exp[−(t/τKWW)µ], 0 < µ < 1, t � 0, τKWW > 0. (77)

(77) has the same functional form as the one-sided positive stable (or Levy) distribution.
For high frequencies, both χGC(ω) and χKWW(ω) have same fractional power dependence if
µ = α. This is to be expected since for sufficiently small time, both φGC(t) and φKWW(t) have
similar local behaviour with appropriate choice of parameters (figure 1). Both these functions
satisfy locally self-similar property [6]. However, φGC(t) differs from φKWW(t) considerably
for large t (figure 2). In fact, it can be shown in the low-frequency limit that �χ ′

KWW(ω) ∼ ω2

and χ ′′
KWW(ω) ∼ ω, which are the same as �χ ′

DC(ω) and χ ′′
DC(ω), but different from the results

(62) and (63). Hence, in the frequency domain the KWW relaxation function differs from
the HN (except for the Cole–Davidson case) and the GC model in the low-frequency limit
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Figure 1. Comparing φGC(t) and φKWW(t) with τGC = τKWW = 1 for t � 1. (a) α = µ = 0.5;
(b) α = µ = 0.9.

0 3.33 6.67 10
0

0.25

0.5

0.75

1

GC t 0.5,( )

φ

φ

KWW t 0.5,( )

t

   

0 3.33 6.67 10
0

0.25

0.5

0.75

1

φGC t 0.9,( )

φKWW t 0.9,( )

t

   

(a) (b)

Figure 2. Comparing φGC(t) and φKWW(t) with τGC = τKWW = 1 for t � 1. (a) α = µ = 0.5;
(b) α = µ = 0.9.

Table 1. Summary of asymptotic properties of response functions and susceptibility functions
of GC, HN, CC, CD and KWW models. For each function, the upper row gives long-time and
low-frequency asymptotes and the lower row gives short-time and high-frequency asymptotes.

− dφ
dt

χ(ω) χ ′(ω) χ ′′(ω) �χ ′(ω)

GC t−αβ−1 ωαβ – ωαβ ωαβ

tα−1 ω−α ω−α ω−a –
HN t−a−1 ωa – ωa ωa

tab−1 ω−ab ω−ab ω−ab –
CC t−a−1 ωa – ωa ωa

ta−1 ω−a ω−a ω−a –
CD t−2 ω – ω ω2

tb−1 ω−b ω−b ω−b –
KWW tµ−1 e−tµ ω – ω ω2

tµ−1 ω−µ ω−µ ω−µ –

(see table 1). There exists one main difference between the stretched exponential relaxation
function and that of GC and HN. The stochastic process defined by the covariance φKWW(t)

is a SRD or short-memory process since∫ ∞

0
exp −(t/τKWW)µ dt = τKWW

µ
�(1/µ) < ∞. (78)
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On the other hand, both φGC(t) and φHN(t) are covariances of LRD processes for 0 < αβ � 1
and 0 < ab � 1.

The above discussion shows that it is possible to use the one-sided GC covariance function
φGC(t) to model the dielectric relaxation function, and it is expected to provide a reasonable
good fit to experimental data that can be represented by φHN(t) (in particular, the Cole–Cole
relaxation function φCC(t)) and the KWW function. This preliminary consideration needs to
be followed by a comparison of the GC model with the experimental data to actually test the
model.

Despite the similarity in the functional forms of the generalized Cauchy (GC) relaxation
function and the Havriliak–Negami (HN) function, these two functions differ in several
physical aspects. First, we note that one of them (the GC function) is in the time domain
while the other (the HN function) is defined in the frequency domain. They are not Fourier
transforms of each other, there does not seem to exist an analytic link between these two
functions. One clear distinction between these two functions is that for the GC case, the
relaxation function in time domain has a closed analytic form, but the susceptibility does
not, whereas the HN function has a closed form in frequency domain but not its relaxation
function. As mentioned in our earlier discussion, although the asymptotic power laws based
on these two functions are similar, they are not exactly the same. In practice, one may attempt
to distinguish these two functions at the intermediate time and frequency ranges. Furthermore,
it is important to link the two parameters in these functions with physical properties of the
relaxation medium. It was pointed out by Coffey [42] recently that one of the most important
question in non-Debye (or anomalous) dielectric relaxation is the physical interpretation of
the parameters α and β (or a and b) in various relaxation formulae, and what are the physical
conditions which give rise to these parameters. In the case of the GC function, if it is regarded
as the covariance of a random process, then the two parameters α and β can be given the
following physical interpretation. The parameter α determines the fractal dimension and
self-similarity (or to be more exact, local self-similarity) of the process, while β characterizes
the long-range dependence (or long-memory property). On the other hand, since the inverse
Fourier transform of the HN function does not have a close form, we can only obtain the
time domain relaxation function in the form of asymptotic series. Its large-time behaviour
still indicates long-range dependence, and its fractal character can be seen from its small-time
power law behaviour. It is clear that more physical considerations are necessary to trace the
origin and the basis of the relaxation functions, which may provide a clue to the understanding
of the relationship between them.

6. Conclusion

We have studied some of the basic properties of the two-parameter generalized Cauchy process.
The asymptotic properties of its spectral density are obtained based on the Fourier transform
of the series expansion of the covariance function. The results obtained are in agreement
with that of Kotz et al [27] and Erdogan and Ostrovskii [28], who employed the contour
integral method. We also consider the possible application of the GC process to relaxation
phenomena. It is shown that the covariance of the one-sided generalized Cauchy process
gives an asymptotic power law behaviour of the response function of the relaxation process
similar to the HN function. It is only in the case of the Cole–Cole function (b = 1) does the
GC relaxation function (with β = 1) have the same fractional power laws for both high- and
low-frequency domains. In comparison with the KWW function, the GC relaxation function
shows similarity only in the short-time or high-frequency region.
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We note that there exist some attempts to provide a stochastic formulation to the relaxation
process (see [43] for a brief review), in particular, for the CC and KWW models. In view of
the fact that φGC(t), φCC(t) and φKWW(t) have several basic common properties such as they
are completely monotone and infinitely divisible [4, 5], it will be interesting to see whether a
similar stochastic formulation can also be obtained for the GC model. In particular, one may
follow the approach of Kalmykov et al [44] to obtain a microscopic model for the HN function
based on continuous time random walk and fractional Fokker–Planck equation. A stochastic
formulation based on the knowledge of physical properties of the materials may provide an
explanation to the ‘universal’ character of these relaxation functions [11].
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Appendix A. Fourier transforms of powers of t [29–31]

Let S be Schwartz space of rapidly decreasing infinitely differentiable test functions and S′

be the space of linear continuous functionals on S, which are called tempered distributions
(or tempered generalized functions) over S. A tempered distribution f defines a continuous
functional in S′ via

(f, ϕ) =
∫

f (t)ϕ(t) dt, ϕ ∈ S. (A.1)

If we denote Fourier transform by F [·], then the Fourier transform F [f ] of any tempered
distribution f is defined by

(F [f ], ϕ) = (f, F [ϕ]), f ∈ S ′, ϕ ∈ S, (A.2)

and

F [ϕ](ω) =
∫

R

ϕ(t) e−iωt dt, ϕ ∈ S. (A.3)

Bearing the above definitions in mind, we give the Fourier transforms of generalized functions
tλ+ and |t |λ below:

F
[
tκ+
]
(ω) = i eiλ(π/2)�(λ + 1)(ω + i0)−λ−1, (A.4)

for λ 	= −1,−2, . . . . If λ 	= 0,±1,±2, . . . ,

F
[
tλ+
]
(ω) = i�(λ + 1)

[
eiλπ/2ω−λ−1

+ − e−iλπ/2ω−λ−1
−

]
. (A.5)

For λ = n, a non-negative integer,

F
[
tn+
]
(ω) = [(−i)nπδ(n)(ω) + n!PV (iω)−n−1], (A.6)

where PV(·) denotes the principal value.
Fourier transform of |t |−λ is given by

F [|t |−λ](ω) =
{

[�(λ)]−1|ω|λ−1, λ 	= 1 + 2l, κ 	= −2l,

[�1(λ)]−1|ω|λ−1[�l(λ) − ln |ω|], λ = 1 + 2l,
(A.7)
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where l = 0, 1, 2, . . . , and

�1(λ) = (−1)(1−λ)/2√π2λ−1�(λ/2)�[(λ + 1)/2], (A.8)

�l(λ) = ln 2 +
1

2


−γ + �′(λ/2)/�(λ/2) +

l∑
j=1

1

j


 , (A.9)

and γ is Euler’s constant [22] with value γ = −�′(1) ≈ 0.577 216.

For t−n
+ , we have

F
[
t−n
+

]
(ω) = (iω)n−1

�(k)

[
k−1∑
n=1

n−1 + �′(1) + iπ/2 − ln(ω + i0)

]
. (A.10)

Appendix B. Some functional relations of gamma functions ([23], p 946)

Below are some functional relations of gamma functions which have been used in this paper:

�(1 + x) = x�(x), (B.1)

�(1 − x)�(x) = π

sin πx
, (B.2)

�

(
1

2
+ x

)
�

(
1

2
− x

)
= π

cos πx
, (B.3)

�(2x) = 22x−1

√
π

� (x) �

(
1

2
+ x

)
. (B.4)

The following are gamma functions for some particular values:

�(1) = �(2) = 1,
(B.5)

�
(

1
2

) = √
π,

�
(− 1

2

) = −2
√

π. (B.6)

For n a natural number,

�(1 + n) = n!. (B.7)
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